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SUMMARY

Alkali metal boilers are of interest for application to future space Rankine cycle power conversion

systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but devel-

opment was not continued to operational systems since NASA's plans for future space missions were

drastically curtailed in the early 1970' s. In particular, piloted Mars missions were indefmitely deferred.

With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest

was rekindled in challenging space missions and, consequently in space nuclear power and propulsion.

Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary

space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of

interest to provide electric power for NEP vehicles and for "dual-mode" NTP vehicles, where the same

reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although

the boiler is not a major contributor to system mass, it is of critical importance because of its interaction

with the rest of the power conversion system; it can cause problems for other components such as excess

liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities--

some severe enough to cause system failure.

Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient

to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994,

funding for these challenging missions and technologies has again been curtailed, and planning for the
future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's

and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs

may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for

space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover,

pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the
NASA Lewis Research Center in the 1960's and early 1970's.

INTRODUCTION

Alkali metal boilers are of interest for future space Rankine cycle power conversion systems. Sig-

nificant progress was made in the 1960's and early 1970's on boiler technology, but flight hardware was

not developed since NASA's plans were curtailed in the early 1970's. In particular piloted missions to

Mars were indefinitely deferred until President Bush announced the Space Exploration Initiative (SEI) in

July 1989. Nuclear electric propulsion (NEP) (e.g., refs. 1 and 2) and nuclear thermal propulsion (NTP)

(e.g., ref. 3) have been proposed for both piloted and cargo vehicles, particularly for Mars missions. The

potassium Rankine cycle is of interest to provide electric power for NEP vehicles (e.g., refs. 4 to 8) and
for "dual-mode" NTP vehicles, where the same reactor is used directly for propulsion and (with an



additionalpowerconversionloop)forelectricpowergeneration(e.g.,refs.9 to 10).Sciencemissionsto
theouterplanets(e.g.,ref. 11)andcargotransferfromlow-Earthorbit(LEO)togeosynchronousorbit
(GEO)or low-lunarorbit(LLO)(e.g.,ref. 12)couldalsobenefitfromNEP,butaregenerallyatlower
powerlevelswhereotherconversionsystemsofferadvantagesovertheRankinecycle.

ForhigherpowerlevelsRankinecyclesystemsareveryattractiveinsystemtradestudies(e.g.,
refs.4, 13,and14).In aRankinecyclesystem,powerisgeneratedbyturboalternatorsdrivenbyvapor
generatedin theboiler.Thevaporis thencondensedandthecyclewasteheatis rejectedin aradiator.In
orderto minimizethemassof theradiator(thelargestcomponentofthepowerconversionsystem)andto
achievehighefficiency,boilingtemperaturesontheorderof 1450K aredesired.Alkali metals(suchas
sodiumorpotassium)maybeconsideredastheworkingfluid inorderto meetthehigh-temperature
requirements.In turnsuitablerefractorycontainmentmaterialsfor thealkalimetalswill berequired,such
asniobiumortantalum,for systemcomponents.In additiontothehigh-temperaturerequirements,the
powersystemmustoperatereliablyforperiodsof 10000hr ormore.

Forspacecraftpowersystems,theRankinecyclewithaonce-throughboilerishighlyattractive.
Althoughtheboilerhasarelativelylowmass,it iscriticallyimportantbecauseof itsinteractionwiththe
restof thepowerconversionsystem;it cancauseproblemsfor othercomponentssuchasexcessliquid
dropletsenteringtheturbine,reducingitslife,ormorecritically,it candrivefluid instabilities--some
severeenoughto causesystemfailure(e.g.,refs.6 and15).

LimitedtechnologydevelopmentfundingfortheSEIprecludedarenewedeffortonRankine
cycleboilersfor spaceapplication.InFiscalYear1994fundingfor thesechallengingmissionsandtech-
nologieshasagainbeencurtailed,andplanningfor thefutureisveryuncertain.Thispaperreviewsthe
technologiesdevelopedin the1960'sand1970'swithaneyetowardSEIapplications.In thisway,future
Rankinecycleboilerprogramscanbeconductedmostefficiently.Thisreportisaimedatevaluatingalkali
metalboilertechnologyapplicableto spaceRankinecyclesystems.Thereportfocusesprimarilyonwork
performedattheNASA Lewis Research Center and, to a lesser extent, its contractors in the time period
between 1961 and 1971 (ref. 15). The emphasis of that research was to develop the technologies for once-

through, compact boilers with high-heat fluxes, to generate dry vapor stably, without gravity for phase

separation. Many different experimental approaches to the problem were pursued, and several potential

solutions were developed. Reference 15 includes many pertinent references and a bibliography dating

back to 1937. Additional summary information may be found in references 16 and 17.

REVIEW OF EARLIER WORK

Many of the experiments to be discussed were conducted with water, since experimentation with

the alkali metals is both difficult and expensive to perform. Furthermore, with the exception of liquid

thermal conductivity, low-pressure water has boiling properties similar to those of alkali metals.

Holcomb (ref. 7) reviewed some of the pertinent past Rankine cycle research and development

activities. In the SNAP-50/SPUR program, Pratt & Whitney Aircraft designed a system in 1961 featur-

ing a 2.2 M"W t lithium-cooled fast reactor with a 0.3 MW e potassium Rankine cycle power conversion
system. The General Electric Company (GE) focused on component development for the boiler, turbine,
and condenser. Oak Ridge National Laboratory (ORNL) designed a system in 1959 featuring a 1 MW t

direct-boiling potassium cooled fast reactor with a 0.15-MW e potassium Rankine cycle power conversion

system. ORNL also focused on component development for the reactor, turbine-pump, and condenser.
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BoilingCharacteristics

Background.--Duringtheboilingof a fluid flowing through a channel, several heat transfer

regimes are encountered. A typical case is illustrated in figure 1. The liquid to be vaporized enters the
channel and is heated in the liquid phase to the point where bubble nucleation first occurs. Nucleate boil-

ing continues until enough vapor is generated that the resulting increase in velocity is sufficient to sup-

press nucleation (by increasing the heat transfer coefficient, thus lowering the wall temperature). Beyond

this point, heat is transferred to the thin liquid film and vaporization occurs at the liquid-vapor interface.

Throughout these boiling regimes, liquid is being entrained into the vapor core. In spite of any

redeposition of liquid from the core to the film, at some point there is no longer sufficient liquid to wet
the wall and the liquid film breaks down, with a large reduction in heat transfer coefficient, often more

than an order of magnitude. This transition has been variously termed "boiling crisis," "departure from

nucleate boiling," "onset of dry-wall boiling," and "burnout," as well as other names. This film break-

down is generally followed by a transitional regime wherein a considerable amount of liquid remains on

the wall, although no longer a continuous film. Eventually only a few droplets remain on the wall, and

most of the heat added through the wall goes into heating the vapor. It then becomes very difficult to

vaporize the remaining droplets. (Note that the "boiling crisis" is not really a crisis in a heat exchanger

boiler; however, it could present severe problems in such applications as a direct-boiling reactor.)

In order to design a forced-flow boiler, it is necessary to be able to predict the heat transfer and

pressure drop characteristics in each of these regimes. This problem is complicated by the wide variety of

possible two-phase flow regimes and by thermodynamic nonequilibria, such as subcooled boiling in many

fluids, liquid superheat in alkali metals, and liquid droplets entrained in superheated vapor. It is also very

important that the boiler not interact with other system components to produce instabilities. The following

sections describe these problems in more detail.

Stability and dynamics problems._The problem of boiler instabilities is quite serious in systems

using forced-flow, once-through boilers. Such instabilities lead to poor performance of the system and can
lead to failure. Lowdermilk, Lanzo, and Siegel (ref. 18) found that flow oscillations could cause a large

decrease in the heat flux at the boiling crisis. The instability could be prevented by restricting the flow

upstream of the boiler, thereby decoupling the upstream liquid leg (which may also contain vapor or gas
voids). In this regard, they found that a compressible volume upstream of the boiler had a destabilizing

effect. It has been reported by others that restricting the boiler exit has a destabilizing effect. Thus, the

boiler feed system, inlet, and exit geometries are all quite important.

Preheating

T
Boili ng
initiation

Nucleate Liauid-film Dropletvaporizationand
boili ng evaporation vapor superheati_g

1 1
Suppression Liauid film _ Flow
of nucleation breakdown

Figure 1 .--Typical heat-transfer regimes for boiling in a flow channel.



The first type of instability to receive much attention with regard to forced-flow boilers was the

flow excursion instability, sometimes called the "Ledinegg instability." This problem generally results

from improper matching of pump and boiler hydraulic characteristics, as was first reported by Ledinegg

(ref. 19). This type of instability may be explained with the aid of a typical curve of pressure drop 3d_

against boiling fluid flow rate W b at constant heat input, as shown in figure 2 (from ref. 20). If the operat-
ing point is in the negative-slope portion of the boiler pressure-drop curve when the slope of the supply

system curve is less steep than the slope of the boiler curve, the system is unstable. The operating point

may jump to one of the other two points of intersection. This type of instability may be avoided by

increasing the slope of the supply system curve, that is, by increasing the system pressure drop to steepen

the pump characteristic (e.g., ref. 20).

As research and development of Rankine-cycle power systems continued, other modes of insta-

bility were recognized, such as boiler/feed system coupling, excursions caused by flashing of superheated

liquid (in alkali metals), and interactions of boiler and condenser. Boiler/feed system coupling instabilities

occur when the dynamic or time-varying flow resistances of the boiler and its feed system produce,

instantaneously, a situation similar to the Ledinegg instability described in the preceding paragraph. How-

ever, since this instability is caused by dynamic flow resistances or more generally impedances (by anal-

ogy to electric circuits), it produces oscillations rather than excursions (e.g., ref. 21).

The instabilities due to both actions in the condenser and breakdown of liquid superheat are

related to the sudden formation or collapse of vapor. The rapid collapse of a vapor void may cause reverse
flow downstream of the void and simultaneously increase the flow rate upstream. This obviously will

cause instabilities throughout the system. With sudden void formation, such as in flashing of superheated

liquid, the reverse (or at least reduced) flow occurs upstream of the void and increasing flow occurs

downstream, but the destabilizing effects are similar.

Initiation of vaporization.--In order to initiate vaporization in a liquid, either the pressure must be

lowered below the saturation pressure, or the temperature must be raised above saturation temperature.

Ct.

_"_ _ _Stable supply system /

\\\ /

_ j/__rOperating point /

,,,v,,o/,/ N----Z

/
Boiling-fluid flow rate, Wb

Figure 2.mPressure drop as function of flow rate for typical boiler and supply

system at constant heat input fief. 20).
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Vaporization generally cannot be initiated exactly at saturation because of surface tension effects and the

unavailability of nucleating sites. For a spherical bubble of radius r at saturation pressure Ps to grow, the

pressure Pe of the surrounding liquid must be less than

Pe = Ps - 2cy/r

where o is the surface tension. This equation is derived from a force balance on a static, spherical bubble.

The nonequilibrium condition required to initiate vaporization can be achieved by different processes;

therefore, there are several different ways the nonequilibrium can be defined. Terms such as "liquid ten-

sion" (ref. 22), "bulk superheat," and "wall superheat" are used.

In boiling initiation studies the superheat terminology is generally used. For nonmetallic liquids

the term "wall superheat" is commonly used, since boiling can usually be caused by bringing the liquid in

contact with a sufficiently hot surface, even when the bulk temperature of the liquid is less than satura-

tion. Surface boiling with the liquid bulk temperature less than saturation is termed "subcooled boiling."

The important parameters in determining the wall superheat are heat flux, mass velocity, degree of liquid

bulk subcooling, fluid physical properties, and surface condition.

In order to boil the metallic fluids, it is often necessary to raise the liquid bulk temperature con-

siderably above saturation (e.g., refs. 23 and 24); thus, the term "bulk superheat" Te - Ts is used. The

effects of physical properties and surface conditions have been investigated (e.g., refs. 23 to 26); Chen

(ref. 25); and Holtz (ref. 26) have pointed out the importance of the pressure-temperature history of the
fluid and surface. The effects of mass velocity and temperature had not been resolved in the early 1970's.

When vaporization is achieved by lowering the pressure of the liquid below saturation, the term

"liquid tension" is generally used to describe the nonequilibrium condition before vaporization occurs.

The liquid tension is given by Ps - Pc" Such terminology has commonly been used in cavitation studies
(e.g., ref. 27). The existence of liquids at pressures below zero absolute ("absolute tension") has long been

known (ref. 22). This phenomenon has been attributed to the considerable magnitude of the intermolecu-

lar cohesive forces (ref. 28). Many experimental measurements of these negative absolute pressures

appear in the literature, such as references 29 and 30 for water and reference 31 for organic liquids.

Flow patterns.--A multitude of flow patterns is conceivable for two phases flowing concurrently,

as is the case for a boiler channel. This makes it difficult to develop reliable predictions of two-phase

pressure drop, heat transfer coefficient, and boiling crisis. Some of the flow patterns typically encountered

are shown in figure 3. These are only a few of the possibilities; other flow patterns are plug, wave, dis-

persed, fog, spray-annular, froth, and rivulet. Most flow pattern studies have been with adiabatic, two-

component systems, although some data exist for diabatic conditions. These results are usually presented

in flow pattern maps similar to that of Baker (ref. 32), which is shown in figure 4 (definitions of these

complicated dimensionless parameters may be found in ref. 15 or 32).

Pressure drop._Knowledge of boiling pressure drop is important in the design of power conver-

sion systems. The pressure drop must be known to determine local saturation temperatures and pumping

power requirements. The boiling pressure drop (both time-averaged and instantaneous) is also important

in system dynamics.

Helical-flow-promoting inserts are often used in forced-flow boilers to improve separation of the

phases, to increase heat transfer coefficients (thereby reducing the required heat transfer area), and to pro-
duce a more stable and reliable system. However, these benefits are accompanied by a larger pressure

drop across the boiler. Thus, in order to achieve an optimal design, it is necessary to know the pressure
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Figure 3._Typical two-phase flow pattems. (a) Bubbly flow.
(b) Slug flow. (c) Stratified flow. (d) Annular flow.
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drop penalties imposed by the helical flow inserts as well as the performance improvements obtained by

their use. Prediction methods for pressure drop are discussed in reference 15.

Heat transfer.--Although there have been numerous studies of boiling heat transfer, there was

still no generally applicable prediction available ifi the early 1970's, particularly for high-density-ratio

fluids such as alkali metals and low-pressure water. This is especially true of the subcooled boiling

regime, where nonequilibrium effects are important, although subcooled boiling heat transfer correlations

give reasonable design approximations in many cases. Some correlations proposed for subcooled and net-

quality boiling are discussed in reference 15.

Typical variations of the boiling heat transfer coefficient and quality with axial distance through a

boiling heat exchanger are shown in figure 5. The heat transfer coefficient h is normalized to the all-liquid

value he; quality x is the vapor mass fraction, and axial distance z is normalized to the heated length of the

boiler L H. Boiling heat transfer coefficients are much higher than all-liquid values prior to boiling crisis
and then decrease rapidly with distance, eventually reaching a value on the order of a gas heat transfer

coefficient. For purposes of discussion, three heat transfer regimes are defined: the subcooled regime,

from the inception of boiling to zero heat-balance quality; net-quality boiling prior to the crisis; and the

post-crisis regime. This is of course, a great oversimplification.

Drying of vapor.--In conventional stationary powerplants, generally no attempt is made to vapor-

ize all the incoming liquid; instead the vapor and liquid are separated, and the remaining liquid is recircu-

lated. However, compact systems, such as those for space use, are usually designed to vaporize all the

liquid, using the "once-through" approach. In order to dry the vapor, the two-phase mixture is often
swirled within the boiler, thus centrifuging the liquid to the wall, where it can be vaporized.

, 100-- 1.0

_8 1 .6

z .4

.2

0

' I I I I
-.2_ .2 .4 .6 .8

Normalized distance, zl LH

Figure 5.--Typical boiling heat transfer performance.
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This swid has often been obtained by tube inserts and/or tube coiling. More innovative

approaches investigated include the rotating boiler and the cyclone boiler. Also, a separation device may
be feasible, such as the rotary fluid management device suggested by Mills (ref. 6). Still another method

is the cross flow heat exchanger, wherein the two-phase flow passes through a bank of heated tubes on

which the liquid impinges and is vaporized (ref. 33).

Boiler Configurations

A number of configurations designed and tested in the 1960's and 1970's are reviewed in refer-

ence 15. As pointed out by Holcomb (ref. 7), there exists a significant technology base for Rankine cycle

components for 0.1 to 0.3 M'W e systems. Mills (ref. 6) states that over 20 200 hr of tests were performed
from 1960 to 1972. Much of that work was on single tube boilers, representing one of the many tubes

which would be required for these power levels, and with water to simulate the alkali metals. Typically
these tests should be considered subscale component tests in the context of the applications most recently

of interest. For power generation on an NTP vehicle, system power levels of 0.025 to 0.050 MW e may be

required (refs. 9 and 10). The NEP studies of the early 1990's indicate that the power levels required for a

Rankine cycle system range from 1.5 MW e (ref. 2) to 40 MW e (ref. 34). Based on SP-100 reactor tech-

nology for a 5-MW e system, the thermal power required would be 19 to 48 MW t (ref. 5).

Plain, straight tubes with no inserts.--This is the simplest forced-flow, once-through boiler

design. Many experiments are reviewed in reference 15 for such boilers, both heat exchangers and electri-

cally heated tubes. Experiments were conducted at NASA Lewis on sodium boiling in a refractory-metal,

single-tube-in-shell heat exchanger boiler (ref. 35). Average overall heat transfer coefficients, two-phase

pressure drops and boiling crisis conditions were obtained. Both steady and unsteady boiling perform-
ances were evaluated. The boiler heat transfer performance depended greatly on boiler inlet flow condi-

tion, whether liquid or two-phase. Critical (boiling crisis) qualities in excess of 0.90 were sometimes

obtained under steady conditions. But also, liquid bulk superheats as high as 140 K were obtained in the

boiler before the initiation of boiling.

The initiation of boiling was one of the major problems encountered because the alkali metals

have the ability to remain in the liquid state at bulk temperatures well above saturation. However, with

two-phase flow at the boiler inlet the problem of liquid superheat was eliminated. The effect on boiler

performance of flashing at the upstream orifice was quite complicated since a liquid boiler-inlet condition

gave both the most steady and the most unsteady results of the entire investigation. Figure 6 illustrates the
differences between two-phase and liquid inlet conditions. Shell and boiling-fluid temperatures are plot-

ted against axial distance from the tube inlet. Both sets of conditions were essentially the same except that
in one case, the sodium entering the boiler was in a two-phase state (flashing at the upstream orifice) and,

in the other case, the inlet feed was a subcooled liquid. For the two-phase feed the shell temperature

increased along the boiler, following a generally smooth curve, which indicates a continuous increase in

vapor quality and the same general regime of heat transfer. (The boiling-fluid temperature was estimated

from pressure drop considerations, as no local fluid temperature measurements were made.

In contrast, the shell temperatures for the liquid inlet case showed a slight initial increase and then

were uniform to about halfway along the boiler. At this point there was a sudden transition and the shell

temperatures increased rapidly and followed a curve very similar to that for the two-phase inlet condition.

The isothermal zone represented a region of liquid sodium superheated by about 60 K. Sudden flashing

from this superheat would yield a heat-balance vapor quality of about 0.02. Beyond this point, the overall
heat-transfer coefficient was even greater than that for the two-phase inlet case. The reduced exit quality,

in this case for the liquid inlet condition, reflected the sizeable length of the boiler over which little or no
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Figure 6.---Comparison of sodium boiler temperature profiles for two-phase and liquid boiling-fluid inlet
conditions. Nominal boiling fluid flow rate, 27 g/sec; nominal heating fluid flow rate, 630 g/sec.

heat transfer took place. Obviously, these flow regimes were not optimum, and they could not be conve-

niently studied or visualized in such a complex, high-temperature facility.

To explore these phenomena further, a series of experiments on water-boiling heat exchangers
was conducted at NASA Lewis. Results of these tests as well as for electrically-heated tubes are discussed

in reference 15. Since complete vaporization to a vapor quality of 1.0 was not obtained for any case tested
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with plain straight tubes without inserts, these results were primarily useful in establishing criteria for the

selection of necessary inserts and inlet devices. Inlet pressure drop devices and inserts were required to

achieve the desired performance, as discussed in the following sections.

Tube inserts and/or coiling.--Swirl-generating inserts, tube coiling, or a combination of both

have commonly been used to improve boiler tube performance. Inlet-region plugs also help to prevent the

formation of the generally unstable slug-flow regime. Several types of helical flow inserts have been
tested in alkali metal boilers (refs. 36 and 37). The purpose of such inserts is to maintain liquid on the

boiler tube wall at high vapor qualities. For many of the experiments a full-length helical wire insert was

used for this purpose. Typical inserts are shown in figure 7. Experiments with heat-exchanger boilers with

inserts and/or coiling are summarized in reference 15. These approaches have resulted in varying degrees

of improvement, as for example in the SNAP-8 mercury boiler development program (e.g., ref. 38). Gen-

erally, these swirl techniques improve overall performance. But, they increase pressure drop and tend to

promote rivulet flow with its associated problems, such as vapor superheat with liquid still present (e.g.,
refs. 38 and 39). Part of the problem may have been due to the shear of high-velocity vapor on the liquid,

causing the liquid film to be tom apart.

From the results of these tests reviewed in reference 15, it is apparent that inserts can improve

boiler performance. Swirl devices delay the boiling crisis to higher qualities at the expense of increased

pressure drop. Inlet-region plugs contribute to flow stability by reducing the tendency for reverse flow

and slug flow, with minimal increase in pressure drop. However, stable and complete vaporization was

not consistently obtained with these devices alone.

Inlet restrictors.--Some of the boiling flow instabilities described in the previous sections were

attributed to insufficient boiler-inlet pressure drop. As a consequence, various inlet restrictors were stud-

ied. The following paragraphs describe tests with water and with potassium performed on boilers with

inserts and inlet restrictors (ref. 15).

Water boilers: Since at exit quality of 1.0 could not be obtained with orifices at the inlet of water

boilers, at least over the range of conditions tested, and since the orifice used with the sodium boiler was

not completely satisfactory, alternative devices were tested to provide the pressure drop required. Instead
of orifices, venturis were used in subsequent water-boiling tests. With a venturi, much more of the inlet-

to-minimum pressure difference can be recovered than for an orifice, reducing losses, and the flow is

much more uniformly distributed to the wall at the start of heating. Furthermore, as discussed in detail in

reference 15, cavitation or flashing can be induced in the very low throat pressure venturi, leading to two-

phase choking, which effectively isolates the feed system from any disturbances generated in the boiler.

---- p

_..L.

(al (¢)

(bl (d) CO-II_)':_

Figure 7._Types of boiler tube inserts. (a) Twisted-tape insert. (b) Helical vane insert. (c) Helical wire insert. (d) Helical wire
insert with plug.
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Plots of exit quality and boiler pressure drop against boiler exit temperature difference (heating

fluid minus boiling fluid) for the 0.78-mm throat diameter venturi inlet, inlet-region plug, and helical-wire

insert are shown in figures 8(a) and (b), respectively, for a boiling-fluid flow rate of about 10 g/sec at oth-

erwise nominal conditions. (Stable operation could not be obtained at 7.5 g/sec, probably because of

insufficient pressure drop and/or unsteady cavitation of the venturi.) Vapor superheat was first indicated

X

x
tad

1.0

.8

.6

.4

.2

Exit quality at onset of o
dry-wall boiling for o

-- plain/tube (ref. 85)-)cor

__ _ Plain tube

e,

_a_l I I I I I I

E
Z

<1

O

_D
I,=.

O

0 m

70--

60m

50m

40--

30 m

:Z0--*

10 9_

0 (b)
10

e,
O

O

o

O

O

° __Pfain tube

I i I I I
20 30 40 50 60

I I
70 80

Boiler-exittemperature difference, gse, K

Figure8.--Boilerperformance as function of boiler-exittemperature
difference with helicalwire insert,0.78-ram-throat-diameter venturi,
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at exit vapor quality x e = 0.98; flow oscillations in the range of +_.5to +10 percent were observed at that

point. No erratic boiling-fluid inlet temperature behavior like that seen without an inlet device was

observed. The pressure drop across the venturi and its diffuser was about 170 kN/m 2 with a flow rate of

10 g/sec and an inlet temperature of 300 K.

Another series of runs was made with the same flow rates and boiler exit pressure but with higher

boiling-fluid inlet temperature (371 to 389 K). The exit quality and boiler pressure drop are again plotted

against the boiler exit temperature difference for this series in figures 9(a) and (b), respectively. Vapor

superheat was observed at exit qualities from 0.96 to 1.02. Boiling-fluid flow oscillations were less than

+5 percent; however, additional pressure drop (as much as 70 kN/m 2) was required at the upstream

throttle valve in addition to the venturi pressure drop for flow stability at the high exit qualities. In these
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runs, conditions were established such that flashing (sudden vaporization) probably occurred in the ven-

turi, but persistence of the vapor into the boiler tube was marginal.

Potassium boiler: The General Electric advanced Rankine cycle test facility used for these tests is

described in references 40 to 42. The lithium-heated boiler tube arrangement is shown in figure 10. Two

T-111 alloy boiler tubes were tested, differing primarily in that the second included an inlet venturi. The

first boiler (without venturi) had a composite insert consisting of a center plug wrapped with a single-

pitch ribbon-type helical vane. Following this the plug tapered down to a 0.64-cm-diameter centerbody

(hollow for thermocouple installations) that extended for about two-thirds of the boiler length as did the
helical vane. Then the helical vane joined (at the same pitch) a wire coil that extended to the boiler tube

exit. The instrumented centerbody extended to the exit but had a 20-cm gap at the start of the wire coil

(designed to prevent liquid flow along the upstream centerbody from being carded over onto the down-

stream centerbody).

The second boiler (with venturi) was similar to the first, except that at the boiler tube inlet a coni-

cally convergent-divergent venturi nozzle with a throat diameter of 0.193 cm was installed, with a central

plug starting in the nozzle diffuser. Wrapped around the plug and extending the full length of the boiler
tube was a helical wire coil. An instrumented centerbody was installed for only the last one-third of the

boiler tube. The lithium heating fluid outlet from the shell was approximately 7.6 cm downstream of the

potassium venturi exit.

The performance of these two boilers is shown in the next three figures, taken by General Electric
under Contract NAS3-9426 and published in references 15 and 41. Typical temperature patterns through-

out the length of the boiler without venturi are shown in figure 11, taken from reference 41. Similar

13
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patterns for the boiler with venturi are shown in figure 12. Temperature distributions for the second boiler

with flashing at the venturi are shown in figure 13. Except for the first few centimeters of the potassium

flow, these temperatures are comparable to those of figure 12, without flashing. Very high heat transfer
coefficients were obtained in all three cases. Data from one test run on the boiler with venturi yielded an

exit vapor superheat of 250 K above the exit saturation temperature of 1090 K, believed to be the highest

superheat achieved in any potassium boiler--at that time (ref. 15). The maximum thermal power attained

was about 0.21 MW r Generally the pressure losses were nearly constant over a range of potassium flow
rate at constant thermal power until vapor superheat was obtained, and the pressure loss increased sub-

stantially. Essentially, the second boiler had a higher pressure drop, directly attributable to the venturi AP.

The boiler with venturi was more stable in operation and performed thermally at least as well as without.
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inlet temperature minus heating-fluid exit temperature, 57 K; flashing at venturL
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Rotating boiler.--A more novel approach to producing dry vapor stably is to rotate the boiler, as

shown schematically in figure 14. Experiments on such a boiler are reported in references 43 and 44. A

rotating boiler has many obvious advantages. It is insensitive to gravity field and orientation. The liquid-

vapor interface is rather sharp and stable, yielding a steady flow of both vapor and liquid. Because of the

centrifugal action on droplets in the vapor space the exit vapor should have low moisture content (high

quality). The use of a rotating boiler, however, requires moving parts and rotating seals.

Some general comments about the rotating boiler operation are pertinent to understanding its per-

formance. The boiler had an approximately constant volume inventory of fluid but with a continuous

throughflow, the rate of which was determined by the heating rate. At low heating rates (and therefore

low flows), the boiler liquid inventory was large relative to the throughflow, and pool boiling was

approximated. Because of the annular symmetry of the boiler and the several small holes for the liquid

inlet, the boiler liquid inventory rotated with the heated wall, in "wheel" flow. At high heating rates,

throughflow was larger and, at high accelerations, vigorous secondary-flow cells developed in the boiler
annulus as a result of convection.

The rotating boiler is a low-pressure drop device. This is an important consideration in a Rankine

cycle system; however, this is partially offset by the power required to rotate the boiler. The liquid flow

into the boiler and the vapor flow out were both steady. It was not necessary to add baffles or vanes to the

boiler to correct for interface waviness or unbalance. The exit vapor quality was always well above 0.99.

Exit vapor superheat was observed for five cases. The vapor outflow could not come in contact with the
heated surface as in conventional boiler tubes near the exit. At very high accelerations, vapor apparently

left the interface at several degrees above saturation temperature, probably as a result of the pressure rise

within the boiling annulus.

Cyclone boiler.--The cyclone boiler concept (fig. 15) represents an attempt to combine the ben-

efits of the rotating boiler with the simplicity of having no moving parts. The liquid or two-phase feed

flows directly into the boiler tangentially in such a manner that a vortex flow pattern is established. The

liquid is centrifuged to the wall and is then driven toward the apex of the cone by secondary flow effects

(ref. 45) augmented by surface tension, while the vapor exits from the opposite end.

In order to study the two-phase flow in a cyclone boiler, in particular the effect of inlet geometry,

air/water tests were conducted with transparent models (ref. 15). Two configurations were tested with

conditions simulating the inlet conditions to a boiler, and good results were obtained. However, due to the

termination of this program, no heated results were obtained at that time. In the mid-1980's, the concept
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Figure 14.--Rotating boiler concept.
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became of interest as the vaporizer for a liquid-fed resistojet for low-thrust space propulsion, and tests

were successfully conducted at very low power (ref. 46). Because of the very low powers and flow rates,

insensitivity to gravity was not demonstrated, but superheated vapor was obtained in both horizontal and

vertical orientations, but with much different heat transfer efficiency.

The cyclone boiler appears to be capable of providing moisture-free vapor at a steady rate. Dis-

tinct separation of liquid and vapor can be achieved without the use of inserts, thus making the cyclone

boiler a relatively low pressure drop device.

CONCLUDING REMARKS

A substantial technology legacy exists for Rankine cycle systems from work done in the 1960's
and 1970's, which can be utilized in reducing risks and costs of operational systems. Alkali metal boilers

for Rankine cycle power conversion system applications were tested by NASA and industry. The major

problems encountered were materials compatibility (not discussed in this report), stability, and droplet

carryover from the boiler.

The flashing venturi inlet approach was developed and demonstrated near the end of this program

which greatly alleviated the stability and carryover problems. The flashing venturi is a proven concept,

giving good results with both water and potassium boilers when used in conjunction with flow-swirling

inserts (the potassium boiler tube was also curved, further promoting secondary flows and relieving

mechanical stresses. This approach merits serious consideration for future development, since not only

does it offer stable, high-efficiency performance, but its use may help provide economies in the develop-

ment program. The development benefits derive from the fact that by fixing the point of initiation of

vaporization, water becomes an excellent simulator of potassium; subcooled boiling (with water) and

superheated liquid (with potassium) are avoided. Therefore, design options and multiple-tube configura-

tions can be tested in water, with final verification in potassium.

17



Further legacy from the earlier work can be found in two promising advanced concepts, the rotat-

ing boiler and the cyclone boiler. The rotating boiler has been very successfully demonstrated with water.

The cyclone boiler is very promising, but is unproven except at very low power.
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